Approximating Geometric
Knapsack via L-packings

Arindam Khan
IDSIA, Lugano, Switzerland

Joint work with
Waldo Galvez, Fabrizio Grandoni, Salvatore Ingala,
Sandy Heydrich, Andreas Wiese.

Geometric Knapsack: (2-D)

Geometric Knapsack: (2-D)

-

. A Square K X K knapsack.

~
- Rectangles I:'= {R, R, ..., R, }; Each R, has integral width and height (w;, h,) and profit p,.

)

Geometric Knapsack: (2-D)
A N

- Rectangles I:'= {R, R, ..., R, }; Each R, has integral width and height (w;, h,) and profit p,.
. A Square K X K knapsack.

)

1S

100 $ 95 $ 90 $ 60 $ 5%
(4,4) (2,3)

(9,6) (7,6) (5,8) (4,6)

A
v

K=10

Geometric Knapsack: (2-D)

-

- Rectangles I:'= {R, R, ..., R, }; Each R, has integral width and height (w;, h,) and profit p,.

. A Square K X K knapsack.

o

p
 Goal: Find an axis-parallel non-overlapping packing of a subset of input rectangles into

the knapsack that maximizes the total profit.

(&

)
~

1S

100 $ 95 $ 90 $ 60 $ 5%

(4,4) (2,3)

(9,6) (7,6) (5,8) (4,6)

A
v

K=10

Geometric Knapsack: (2-D)
A N
- Rectangles I:'= {R, R, ..., R, }; Each R, has integral width and height (w;, h,) and profit p,.
. A Square K X K knapsack.

)
a N
* Goal : Find an axis-parallel non-overlapping packing of a subset of input rectangles into
the knapsack that maximizes the total profit.
& J
Variant 1: 2DK
18 55 No rotations
100 $ 95 90 $ 60 S 5S are allowed!
90 $ 605
&4 (23) OPT=155
(9,6) (7,6) (5,8) (4,6)
< >

K=10

Geometric Knapsack: (2-D)

-

- Rectangles I:'= {R, R, ..., R, }; Each R, has integral width and height (w;, h,) and profit p,.
. A Square K X K knapsack.

o

~

(&

* Goal : Find an axis-parallel non-overlapping packing of a subset of input rectangles into
the knapsack that maximizes the total profit.

)
)

)

100 S

955

(9,6)

(7,6)

90 S

60 S

5%

(5,8)

(4,6)

(4,4)

1S

(2,3)

100 S

r

60 S

A

K=10

Variant 2: (2DKR)
90 degree rotations
are allowed!

OPT=165

Applications:

* Generalization of classical knapsack problem.

* Cutting stock: cloth cutting, steel/wood cutting.

* Logistics and Scheduling: memory allocation, truck loading, robotics.
* Ad-placements, VLSI Design.

KNAPSACK
PROBLEMS

SILVANO MARTELLO-PAOLO TOTH KnapsaCk,
@ i, - Problems
- S ,:"” l::'—“;““'.' ‘

* Independent set
of rectangles:

Positions of

rectangles are
fixed, find max
profit subset

Related Problems

e Unsplittable flow/
Storage allocation:

Horizontal positions
of rectangles are

fixed, find max
profit subset

e Two Dimensional
Bin Packing:

Pack all items in min
of squares

e Two Dimensional
Strip Packing:

Pack all items in min
height fixed-width strip

Geometric Knapsack:

 Geometric Knapsack is Strongly NP-hard
(even when all items are squares with profit 1), [Leung et al., JPDC 1990].

* No exact algorithm even in pseudo-polynomial time (unless P=NP).
* So, we will consider Approximation Algorithms.

* An algorithm A is a-Approximation
- if OPT(I) £ a A(l) for all input instances |.

Geometric Knapsack: Prior works

e Best known approximation: (2+¢€) [Jansen-Zhang, SODA’04]
- for both with and without rotations.
- even in the cardinality case (when all profits are 1).

* (1+€)-approximation known if
- profit of an item is equal to its area. [Bansal et al., ISAAC ‘09].
- items are relatively small [Fishkin et al., MFCS ‘05].
- items are squares [Jansen-SolisOba, MFCS '07].

Geometric Knapsack: Prior works

* Resource augmentation:
- if knapsack size is increased from K to (1+€)K in both [Fishkin et al.
MFCS ’05] or one dimension [Jansen-SolisOba, MFCS ’07],
- Profit (1-€)OPT can be obtained in polytime.

* Quasi Polynomial Time Approximation Scheme (QPTAS):
- Profit (1-e)OPT can be obtained in quasi-polytime (O(nrolvlea(n)),
- assuming K = O(nrelvliealn)) [Adamaszek-Wiese, SODA "15].

* In general, (2+€)-appx is still best known even in quasi-polytime.

Our Results:

* General case:

* Without rotations: (17/9+€)<1.89-approximation.

* With rotations: (1.5+€)-approximation.

e Cardinality case:

* Without rotations: (558/325+¢)<1.72-approximation.
* With rotations: (4/3+¢)-approximation.

* In this talk we present a simpler (16/9+¢)<1.78-approximation
for the cardinality case without rotations.

Previous approaches: container-based packing.

Previous approaches: container-based packing.

. . . . K
* Container is an axis-aligned

rectangular region such that

Previous approaches: container-based packing.

. . . . K
* Container is an axis-aligned

rectangular region such that

e either it contains one large item.

Previous approaches: container-based packing.

. . . . K
* Container is an axis-aligned

rectangular region such that
e either it contains one large item.

* Or items are packed inside the
containers either as a horizontal
stack or vertical stack

Previous approaches: container-based packing.

. . . . K
* Container is an axis-aligned

rectangular region such that
e either it contains one large item.

* Or items are packed inside the
containers either as a horizontal
stack or vertical stack

Previous approaches: container-based packing.

. . . . K
* Container is an axis-aligned

rectangular region such that
e either it contains one large item.

* Or items are packed inside the
containers either as a horizontal
stack or vertical stack

e or all items inside it are
in both dimensions.

Previous approaches:
a-approximation using container-based packing.

K

Previous approaches:
a-approximation using container-based packing.

* For any feasible packing, at least a)

fraction of the profit can be packed
into O(1) number of containers.

* The sizes (and thus positions) of C
containers can be found in n°© time.

* Containers can be packed using a

Dynamic Program based PTAS for

multiple-knapsack problem.

Bottleneck of 2-approximation:

* Consider the case when all items are long:
have either width > K/2 or height > K/2.

* Trivial (2+€)-approx. by taking either vertical or
horizontal items and use 1-D knapsack PTAS.

e VVertical and horizontal items can interact in a
very complicated way.

* Not clear how to beat 2-approximation, even in
cardinality case, using container-based packing.

Bottleneck of 2-approximation:

e Consider the case when all items have either
width > K/2 or height > K/2.

* Trivial (2+€)-approx. by taking either vertical or
horizontal items and use 1-D knapsack PTAS.

e VVertical and horizontal items can interact in a
very complicated way.

* Not clear how to beat 2-approximation, even in
cardinality case, using container-based packing.

Bottleneck of 2-approximation:

* To handle this complex interaction, we go beyond containers!

* L-packing problem:
- Given long items (height or width > K/2) and an L-shaped region.
- Pack maximum profit subset of items inside the L-region.

* Previous best: (2+€)-approx.

W,
A __

PTAS for L-packing

Pseudo-polytime algorithm for L-packing.

e
]
v iH” —

Pseudo-polytime algorithm for L-packing.

 All horizontal (resp. vertical) items are placed in the L-region
according to nonincreasing width (resp. height) and touching
right (resp. top) boundary.

Pseudo-polytime algorithm for L-packing.

 All horizontal (resp. vertical) items are placed in the L-region
according to nonincreasing width (resp. height) and touching
right (resp. top) boundary.

Pseudo-polytime algorithm for L-packing.

 All horizontal (resp. vertical) items are placed in the L-region
according to nonincreasing width (resp. height) and touching
right (resp. top) boundary.

* Either a vertical (or hor.) cut exists that separates the tallest (or
widest) item from a smaller L-region.

Pseudo-polytime algorithm for L-packing.
:] * Dynamic Program

gives optimal solution
in (Kn)°®) time.

 All horizontal (resp. vertical) items are placed in the L-region
according to nonincreasing width (resp. height) and touching
right (resp. top) boundary.

* Either a vertical (or hor.) cut exists that separates the tallest (or
widest) item from a smaller L-region.

PTAS for L-packing.

 Structural lemma:
Modify packing of horizontal (resp. vertical) items in L-packing s.t.
- items of profit <ep(OPT) is removed,
- remaining items are shifted down (resp. left) or stays same,
- the top (resp. right) coordinates of items takes only n°® values.

|

PTAS for L-packing.

 Structural lemma:
Modify packing of horizontal (resp. vertical) items in L-packing s.t.
- items of profit <ep(OPT) is removed,
- remaining items are shifted down (resp. left) or stays same,
- the top (resp. right) coordinates of items takes only n°® values.

PTAS for L-packing.

 Structural lemma:
Modify packing of horizontal (resp. vertical) items in L-packing s.t.
- items of profit <ep(OPT) is removed,
- remaining items are shifted down (resp. left) or stays same,
- the top (resp. right) coordinates of items takes only n°® values.

Cardinality case without rotations:
~16/9-approximation

w,

* Long items: longer side > K/2.
* Short items: both sides < K/2.

* Packing 1 : Packing of L-region
= (% OPT

e Packing 2 : Packing of O(1) containers
= (72 OPT,,,+% OPT 1)

* Best packing:
(%0PT,,..)% + (V2OPT,, . +%OPT, |)%
> (OPT,,,,+OPT)9/16 > 9 OPT.

short —_—

1

long)

Packing 1. = (% OPT,,,), "L" of the ring!
— r _ _ —
|1 L — 1
* Create stacks from rectangles from OPT,, ., to form a ring.

* Remove least profitable stack in the ring.
* Rearrange remaining long items into an L-packing.
* Use PTAS for L-packing to get profit at least = % OPT,, . .

Packing 2 = (%2 OPT,, ,+% OPT,)

* If OPT < 1/¢€3, solve optimally by brute-force.

* So, consider OPT >1/¢3.

* Define Large items have both sides > €K.

* There are < 1/e2< € OPT large items.

* We loose small profit by discarding large items.

Packing 2 = (%2 OPT,, ,+% OPT,)

* If OPT < 1/¢€3, solve optimally by brute-force.

* So, consider OPT >1/¢3.

* Define Large items have both sides > €K.

* There are < 1/e2< € OPT large items.

* We loose small profit by discarding large items.

Packing 2 = (%2 OPT,, ,+% OPT,)

* If OPT < 1/¢€3, solve optimally by brute-force.
* So, consider OPT >1/¢3.

* Define Large items have both sides > €K.

* There are < 1/e2< € OPT large items.

* We loose small profit by discarding large items.

* So all remaining items have either height or
width < €K.

Packing 2 = (%2 OPT,, ,+% OPT,)

* Remove all items intersecting a random vertical
(or horizontal) strip of width (or height) K.

* Prob. a horizontal (vertical) long item is
removed < 2.1+ % .0(g).

* Prob. a horizontal (vertical) short item is
removed < . %+ % . 0(g).

* Remaining items = (2 OPT, _+% OPT_, _.).

long

Packing 2 = (%2 OPT,, ,+% OPT,)

* Remove all items intersecting a random vertical
(or horizontal) strip of width (or height) K.

* Prob. a horizontal (vertical) long item is
removed < 2.1+ % .0(g).

* Prob. a horizontal (vertical) short item is

removed < . %+ % . 0(g).
* Remaining items = (/2 OPT +7% OPT,,).

* We can pack remaining items into O(1)
containers using resource-augmentation.

Packing 2 = (%2 OPT,, ,+% OPT,)

* Remove all items intersecting a random vertical
(or horizontal) strip of width (or height) K.

* Prob. a horizontal (vertical) long item is
removed < 2.1+ % .0(g).

* Prob. a horizontal (vertical) short item is

removed < . %+ % . 0(g).
* Remaining items = (/2 OPT +7% OPT,,).

* We can pack remaining items into O(1)
containers using resource-augmentation.

Packing 2 = (%2 OPT,, ,+% OPT,)

* Remove all items intersecting a random vertical
(or horizontal) strip of width (or height) K.

* Prob. a horizontal (vertical) long item is
removed < 2.1+ % .0(g).

* Prob. a horizontal (vertical) short item is

removed < . %+ % . 0(g).
* Remaining items = (/2 OPT +7% OPT,,).

* We can pack remaining items into O(1)
containers using resource-augmentation.

Packing 2 = (%2 OPT,, ,+% OPT,)

* Remove all items intersecting a random vertical
(or horizontal) strip of width (or height) K.

* Prob. a horizontal (vertical) long item is
removed < 2.1+ % .0(g).

* Prob. a horizontal (vertical) short item is

removed < . %+ % . 0(g).
* Remaining items = (/2 OPT +7% OPT,,).

* We can pack remaining items into O(1)
containers using resource-augmentation.

Cardinality case with Rotations

With rotations: a simple 3/2-approximation.

* Resource Contraction Lemma:
If rectangles M can be packed in
KxK bin and [M[21/€3, then at

least 2/ //3 rectangles can be -

packed into Kx(1-O(s))K bin.

With rotations: a simple 3/2-approximation.

* Resource Contraction Lemma:
If rectangles M can be packed in
KxK bin and [M[21/€3, then at

least 2/ //3 rectangles can be
packed into Kx(1-O(s))K bin.

With rotations: a simple 3/2-approximation.

* Resource Contraction Lemma:
If rectangles M can be packed in

KxK bin and [M[21/€3, then at
least 2/ //3 rectangles can be
packed into Kx(1-O(s))K bin.

* Using resource augmentation,
this shows existence of a
container packing that gives

3/2-approximation.

Open Problemes.

* Find a PTAS! Even in the cardinality case.

* Understand natural generalizations of L-packing.
o Is there PTAS for ring instance?
o Is there PTAS for L-packing with rotations?
o Is there PTAS for O(1) instances of L-packing?

* More related literature and open problems:

, Christensen-Khan-Pokutta-Tetali, Computer Science Review’17.

THHIRF

Additional Slides

Extension to the weighted case.

* Few items can contribute to the majority of the
profit.

 We can no more discard large items.

* Involved use of corridor-partitioning.
[Adamaszek,Wiese; SODA’15, FOCS'13]

- Any feasible packing can be partitioned
into O(1) corridors Frectilinear polygons)
defined by O(1) number of line segments
and intersecting only rectangles o '
profit <ep(OPT).

- A large fraction of the profit can be
retained by containers constructed
from corridors.

PTAS for L-packing.

e Consider horizontal items H.

PTAS for L-packing.

e Consider horizontal items H.

* Create G, a growing subsequence
of items where heights increase.

r 0]

|

PTAS for L-packing.

e Consider horizontal items H.

* Create G, a growing subsequence
of items where heights increase. } Group 2

* If p(G)<ep(OPT),
- remove G.
- This creates several groups.
- shift items within each group.

PTAS for L-packing.

e Consider horizontal items H.

* Create G, a growing subsequence
of items where heights increase.

* If p(G)<ep(OPT),
- remove G.
- This creates several groups.
- shift items within each group.

b(j)

} Group 2
} Group 1

PTAS for L-packing.

e Consider horizontal items H.

* Create G, a growing subsequence
of items where heights increase.

* If p(G)<ep(OPT),
- remove G.

- This creates several groups.
- shift items within each group.

Group 2

Group 1

o

PTAS for L-packing.

e Consider horizontal items H.

* Create G, a growing subsequence
of items where heights increase.

* If p(G)<ep(OPT),
- remove G.
- This creates several groups.
- shift items within each group.

Group 2
MultiplEof h(b(j))/2n
Multiple of h(b(j))/2n
. MGTHRTE of h(b(j))/2
Group 1

PTAS for L-packing.

e Consider horizontal items H.

* Create G, a growing subsequence
of items where heights increase.

* If p(G)<ep(OPT),
- remove G.
- This creates several groups.
- shift items within each group.

* Otherwise if p(G)>ep(OPT),
use recursion within the groups.
- much involved!

Next Fit Decreasing Height(NFDH)

s

"

r2

Considered items in a non-increasing order of height and
greedily packs items into shelves.

Shelf is a row of items having their bases on a line that is either
the base of the bin or the line drawn at the top of the highest
item packed in the shelf below.

items are packed left-justified starting from bottom-left corner
of the bin, until the next item does not fit. Then the shelf is
closed and the next item is used to define a new shelf whose
base touches the tallest(left most) item of the previous shelf.

If the shelf does not fit into the bin, the bin is closed and a new
bin is opened. The procedure continues till all the items are
packed.

* If we pack small rectangles (w,2<J) using NFDH into B, total w./2 — (w+/2).J'area can be packed.

Shelf Packing

Given a rectangular region of size a£ b
Goal: Pack squares of length - s

Shelf Packing

Given a rectangular region of size axb
Goal: Pack squares of length <s

Algorithm: Decreasing size shelf packing.

Take squares in decreasing size

* Place sequentially

Shelf Packing

Given a rectangular region of size a£ b
Goal: Pack squares of length <s

Algorithm: Decreasing size shelf packing.

Take squares in decreasing size

* Place sequentially
a - If next does not fit,
open a new shelf

Shelf Packing

Given a rectangular region of size a£ b
Goal: Pack squares of length - s

Algorithm: Decreasing size shelf packing.

Take squares in decreasing size

* Place sequentially
a 4 8 - If next does not fit,
open a new shelf

Shelf Packing

Given a rectangular region of size a£ b
Goal: Pack squares of length - s

Algorithm: Decreasing size shelf packing.

Take squares in decreasing size

* Place sequentially
a 4 8 - If next does not fit,
open a new shelf

Shelf Packing

Given a rectangular region of size a£ b
Goal: Pack squares of length - s

Algorithm: Decreasing size shelf packing.

Wasted Space - s(a+b)

Shelf Packing

Given a rectangular region of size axb
Goal: Pack squares of length - s

Algorithm: Decreasing size shelf packing.

Wasted Space - s(a+b)

Right side: At most s £a

Shelf Packing

Given a rectangular region of size a£ b
Goal: Pack squares of length - s

Algorithm: Decreasing size shelf packing.

Wasted Space - s(a+b)

Right side: At most s £a
TOP) 516 b

Shelf Packing

Given a rectangular region of size a£ b
Goal: Pack squares of length - s

Algorithm: Decreasing size shelf packing.

Wasted Space - s(a+b)

9 16 Right side: At mosts£a
Top) 516 b
a 4 8
Shelf 1: (51 "'53) b
1 3

Shelf Packing

Given a rectangular region of size a£ b

Goal: Pack squares of length - s

Algorithm: Decreasing size shelf packing.

16

Wasted Space - s(a+b)

Right side: At most s £a
Top) 516 b

Shelf 1: (s;-s35) b
Shelf 2: (s, -sg) b

Shelf Packing

Given a rectangular region of size a£ b

Goal: Pack squares of length - s

Algorithm: Decreasing size shelf packing.

16

Wasted Space - s(a+b)

Right side: At most s £a
Top) 516 b

Shelf 1: (s;-s4) b
Shelf 2: (s - 53) b
/

Adding all, at most (s;-51¢) b

